Monday, March 18, 2013

Problem Recognition, Definition, and Representation

Problem recognition, definition, and representation are metalevel executive processes, called metacomponents in Sternberg’s (1985) triarchic theory of human intelligence. This theory proposes that metacomponents guide problem solving by planning, monitoring, and evaluating the problem-solving process. The metacomponents include such processes as (1) recognizing the existence of a problem, (2) defining the nature of the problem, (3) allocating mental and physical resources to solving the problem, (4) deciding how to represent information about the problem, (5) generating the set of steps needed to solve the problem, (6) combining these steps into a workable strategy for problem solution, (7) monitoring the problem-solving process while it is ongoing, and (8) evaluating the solution to the problem after problem solving is completed. In this theoretical context, the processes of problem recognition, definition, and representation correspond to the first, second, and fourth metacomponents, which are used in the planning phase of problem solving.

Problem recognition, also referred to as problem finding, is one of the earliest stages of problem solving. Getzels (1982) classified problems based on how they were “found.” According to Getzels, there are three kinds of problems: those that are presented, those that are discovered, and those that are created. A presented problem is one that is given to the solver directly. In this case, there is no need to recognize or find the problem; it is stated clearly and awaits solution. A discovered problem, however, is one that must be recognized. Such a problem already exists, but it has not been clearly stated to the problem solver. In this case, the problem solver must put together the pieces of the puzzle that currently exist and seek out a gap in current understanding in order to “discover” what the problem is. In contrast to presented and discovered problems, the third class of problems comprises those that are created.

Created problems are those in which the problem solver invents a problem that does not already exist in the field. For this reason, one can argue that a created problem will, in some sense, always produce a creative solution, simply because its problem statement deviated from the usual way of thinking about the problem. Getzels and Csikszentmihalyi (1976) found that artists who spent more time in the problem-finding stage while creating an artwork were judged to have more creative products than did artists who spent less time in problem finding. In fact, the artists who spent more time also remained highly creative seven years later. For the purposes of this chapter, problem recognition refers to both discovered and created problems.

Problem definition is the aspect of problem solving in which the scope and goals of the problem are clearly stated. For example, a presented problem may be easy to define if the problem statement has been prepared for the solver. However, some presented problems are not clearly stated, requiring the problem solver to clarify the precise definition of the problem. Discovered problems usually require definition because the problem solver has identified the problem in his or her field. Defining a created problem is likely to be a challenge, given that the problem solver has gone beyond the current field in inventing the need for a solution in the first place. Problem representation refers to the manner in which the information known about a problem is mentally organized. Mental representations are composed of four parts: a description of the initial state of the problem, a description of the goal state, a set of allowable operators, and a set of constraints.

By holding this information in memory in the form of a mental representation, the problem solver is able to remember more of the problem by chunking the information, in order to organize the conditions and rules of a problem to determine which strategies are useful, and to assess progress toward the goal state (Ellis & Siegler, 1994; Kotovsky, Hayes, & Simon, 1985; Newell&Simon, 1972).Aproblemmaybe represented in a variety of ways, for example, verbally or visually. Even a presented problem may require the generation of a new representation in order to be solved. For example, given the problem of finding your way to a new location, you may find it much easier to follow a map than to read a set of directions. If you have trouble following the map, then it may be worthwhile to write out a description of the route in words, re-representing the information in a way that makes it easier to get to your destination. It is important to note that these three aspects of problem solving are not discrete, sequential stages in the solution process, but rather are interactive and often difficult to tease apart in a real problem-solving situation. When a problem is represented in a new way, the problem solver may decide to redefine the goal accordingly. Similarly, a redefinition may lead to a new representation. It is useful to consider the roles of problem recognition, definition, and representation in the solution of well-defined versus ill-defined problems.

Recall that a well-defined problem is one whose path to solution is straightforward, whereas an ill-defined problem is one that does not lend itself to a readily apparent solution strategy. Consider the following well-defined problem, referred to as the Tower of Hanoi problem:

There are three discs of unequal sizes, positioned on the leftmost of three pegs, such that the largest disc is at the bottom, the middle-sized disc is in the middle, and the smallest disc is on the top. Your task is to transfer all three discs to the rightmost peg, using the middle peg as a stationing area, as needed. You may move only one disc at a time, and you may never move a larger disc on top of a smaller disc. (Sternberg, 1999)

The problem here is easy to recognize: One needs to move the discs onto the rightmost peg. The problem is also defined clearly; the relative sizes of the discs as well as their locations are easy to distinguish. Also, the solution path is straightforward based on this representation. Working backward, one realizes that the largest disc must be placed onto the rightmost peg, and in order to do so, the other two discs must be removed. So that the mediumsized disc does not end up on the rightmost peg, the smallest disc must first be moved to the far right. Then the medium disc is placed on the middle peg; the small disc is placed on top of the medium disc. The large disc is then free to be placed on the rightmost peg. Finally, the small disc is moved to the left so that the medium disc is free to move to the rightmost peg. The last step is then to move the small disc atop the other two and the problem is solved. Note that this well-defined problem can be expanded to include many pegs and many discs of varying sizes, but its solution will always proceed according to the algorithm described in this, the simplest case.

For the most part, well-defined problems are relatively easy to recognize, define, and represent. However, a well-defined problem may entail some degree of “problem finding,” in the sense that a problem exists but must first be discovered. For example, a scientist may struggle to identify a gap in the existing literature on a problem, but the actual process of filling that gap may come easily once the problem itself has been identified.

The solution to the discovered problem may follow a path similar to that of other problems in the field (e.g., experimental methods). For example, much early psychological research was conducted using male participants. When a researcher questioned the validity of the results for females, a new problem had been discovered. Given this new problem, the path to solution was well defined: Simply use the same experimental method but include female participants in the study. In this sense, this well-defined problem was somewhat difficult to recognize, yet once identified, it was easily defined and represented in familiar terms. The representation of well-defined problems is not necessarily easy, however. Consider another problem: Three five-handed extraterrestrial monsters were holding three crystal globes. Because of the quantum-mechanical peculiarities of their neighborhood, both monsters and globes come in exactly three sizes, with no others permitted: small, medium, and large. The small monster was holding the large globe; the medium-sized monster was holding the small globe; and the large monster was holding the medium-sized globe. Since this situation offended their keenly developed sense of symmetry, they proceeded to transfer globes from one monster to another so that each monster would have a globe proportionate to its own size. Monster etiquette complicated the solution of the problem since it requires that: 1. only one globe may be transferred at a time; 2. if a monster is holding two globes, only the larger of the two may be transferred; and, 3. a globe may not be transferred to a monster who is holding a larger globe. By what
sequence of transfers could the monsters have solved this problem? (See Kotovsky et al., 1985)

Hanoi problem (Newell & Simon, 1972). However, it is actually directly isomorphic to (i.e., its structure is exactly the same as that of) the Tower of Hanoi problem. In this case, it is the difficulty of representing the problem correctly that increases the level of difficulty of the problem as a whole. After you are told of the isomorphism between the two problems, the solution is simply a matter of mapping relationships from one problem to the other. In summary, problem definition is usually easy for the class of well-defined problems; however, accurate problem recognition and representation are not necessarily straightforward, even when the scope and goals of the problem are clear. In the case of ill-defined problems, however, it is often the case that all aspects of problem formulation are relatively challenging. Perhaps the easiest stage in attempting to solve an ill-defined problem is that of problem recognition. It is often relatively simple to identify a fuzzy problem. For example, it is easy to identify the problem of developing a test of creativity. It is hard, however, to define the exact contents of such a measure. The real difficulty in solving an ill-defined problem is in clarifying the nature of the problem:howbroad it is, what the goal is, and so on. Although well-defined problems have a clear path to solution, the solution strategy for an ill-defined problem must be determined by the problem solver. To develop a problem-solving strategy, it is first necessary to specify the goals of the task. For example, if we take on the task of designing a creativity test, we must decide whether the goal is (a) to estimate the creativity of undergraduate psychology majors or (b) to measure creative potential among people of all ages and educational and cultural backgrounds. Before the path to solution can be constructed, the goal must be clear.

Related Articles :

No comments:

Post a Comment